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Abstract—A new efficient high-order mixed-edge rectangular-
element method is proposed for the analysis of lossy anisotropic
dielectric waveguides. The space construction of the high-order
mixed-edge rectangular element is investigated and the explicit
form of the shape function is given. The high-order mixed-
edge element yields higher accuracy and faster convergence
than the lowest order mixed-edge rectangular elements without
spurious solutions, and is more efficient compared to the high-
order covariant projection element. The computations of the
propagation constants in the rectangular waveguide and the slab
loaded waveguide show that the accuracy of this high-order
mixed-edge element is about one order higher than that of the
lowest order one, and the nodes used in the calculation are only
two-thirds as many as those used in the high-order covariant
projection element having the same accuracy. The calculations of
the dispersion curves for the dominant mode in the waveguide
loaded with the lossy anisotropic dielectric block verify the
accuracy and efficiency of the present method.

Index Terms—Anisotropic, dielectric waveguide, dispersion,
mixed-edge rectangular-element method.

I. INTRODUCTION

T HE functional formulation with full vector is widely
used to rigorously evaluate propagation problems of

different complicated guiding structures filled with isotropic
or anisotropic dielectrics. The most serious problem associ-
ated with this approach is the appearance of the spurious
solutions. It is recognized that the following two aspects may
produce spurious solutions. First, conventional finite elements
are nonconforming in the curl space. Nedelec has proved
that the continuity of the tangential components between two
adjacent elements is sufficient and a necessary condition of
the conforming element in the curl space [10]. The additional
forced continuity of the normal component in the conventional
finite elements breaks the conforming in the curl space [14].
Secondly, conventional finite elements cannot correctly model
the null space of the curl operator. The full vector is
composed of three components, and the polynomial orders of
interpolated functions for each component in the functional
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must be matched in order to correctly model the null space
of the curl operator.

The penalty-function method [2]–[4] has been used to cure
this spurious modes problem, but in this technique an arbitrary
positive constant, called the penalty coefficient, is involved
and the accuracy of solutions depends on its magnitude. In
recent years, the lowest order [12] and the high-order mixed-
edge triangular element [13]–[16] have been developed to
eliminate the spurious solutions successfully. In some cases,
rectangular elements are suitable for modeling electromagnetic
fields in block-shaped guiding structures, which are widely
used in microwave circuit. In 1984, Hano proposed the lowest
order mixed-edge rectangular in [17], however, the accuracy of
the mixed-edge element is required to be improved for better
applications. To this end, the covariant projection elements
for vector finite-element problems have been developed in
[18]. The high-order covariant projection element yields higher
accuracy and faster convergence, but the number of nodes
increases dramatically with division supplementing because
many inner nodes exist in the element. This decreases the
efficiency of this kind of edge-element.

In this paper, a new efficient high-order mixed-edge
rectangular-element method is proposed. The space con-
struction of the high-order mixed-edge rectangular element
is investigated and the explicit form of the shape function
is given. This element yields higher accuracy and faster
convergence than the lowest order mixed-edge rectangular
elements, and is more efficient compared to the high-
order covariant projection element. The computations of the
propagation constants in the rectangular waveguides and the
slab-loaded waveguides show that the accuracy of the high-
order mixed-edge element approach is about one order higher
than that of the lowest order approach, and the nodes used
in the analysis are only two-thirds as many as those used
in the high-order covariant projection element with the same
accuracy. The calculations of the dispersion curves for the
dominant mode in the waveguide filled with lossy anisotropic
dielectric segment verify the accuracy and efficiency of the
present method.

II. A NALYSIS OF HIGH-ORDER MIXED-EDGE ELEMENT

It is well known that the eigenvalue problem of guided-wave
structures is equivalent to the variational problem of various
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Fig. 1. (a) Lowest order mixed-edge rectangular element. (b) High-order covariant projection element. (c) High-order mixed-edge rectangular element.

functional formulations. It is justified by many of the practical
experiences of the various formulations, with the following
full-vector functional shown to be quite suitable for a lot of
practical and complicated problems

(1)

where and are, respectively, the permittivity and per-
meability tensors, which are defined as

(2)

(3)

When the finite-element method (FEM) is used to solve the
above variational problem, one has to first of all, accurately
and reasonably construct the finite-element space. To do this,
one should keep two criterions in mind. One is that finite-
element space must be conforming in the curl space, which
can be satisfied only if tangential components are used as
interpolated parameters. The other is that finite-element space
should correctly model the null space of the curl operator. For

analyzing propagation problems in the guiding structure, the
curl operator can be described as

H

(4)

Hence, the null space of the curl operator is determined by
the following equations:

(5)

(6)

(7)

From (5) to (7), one sees that in order to keep the same
polynomial order for each term in the equations, which is
required for correctly modeling the null space of the curl
operator, the shape function of should have one-order
higher than that of in , one-order higher than that of

in .
Fig. 1(a) shows the lowest order mixed-edge rectangular

element proposed in [17], which is composed of two tangential
unknowns (1–2) parallel to -direction for interpolating the
component , two tangential unknowns 1–2 parallel to
-direction for interpolating the component , and four
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Fig. 2. Rate of convergence.

Fig. 3. The slab-loaded waveguide.

unknowns (1–4) parallel to -direction for interpolating the
axial component . Obviously, this finite-element space
satisfies the above two criterions.

Fig. 1(b) shows a kind of high-order mixed covariant pro-
jection element developed according to [18], which contains
some inner nodes and is composed of six unknowns (1–6)
parallel to -direction for interpolating the component ,
six unknowns (1–6) parallel to-direction for interpolating
the component , and nine unknowns (1–9) parallel to
for interpolating the axial component . This finite-element
space also satisfies the above two criterions.

Here, a new high-order mixed edge rectangular element
is proposed as shown in Fig. 1(c), which is composed of
four tangential unknowns (1–4) parallel to-direction for
interpolating the component , four tangential unknowns
(1–4) parallel to -direction for interpolating the component

, and eight unknowns (1–8) parallel to-direction for
interpolating the axial component . It is easy to prove this
new finite-element space satisfies the above two criterions.
Since there are no inner nodes in the element, the total number
of nodes is reduced and the computing efficiency of the method
is improved. Some numerical results given in the next section
confirm this conclusion.

In order to conveniently obtain interpolating function for,
the – coordinate is transformed to– coordinate according
to the following transformation formulas:

(8)

(a)

(b)

Fig. 4. Dispersion characteristics of theEy

11
mode in the lossy dielectric

block-loaded waveguide. (a) Normalized phase constant. (b) Normalized
attenuation constant.

(9)

Hence, the following expressions for the electromagnetic
field in each element have been derived:

(10)

(11)

(12)

with
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TABLE I
A COMPARISON OF THEPROPAGATION CONSTANT OF THE SLAB LOADED WAVEGUIDES BETWEEN THE THEORETICAL AND CALCULATED RESULTS

Substituting (10)–(12) into (1), one obtains the following
final eigenvalue equations, which gives a solution directly for
the propagation constant:

(13)

where , , and are shown at the bottom of the
page, with

III. N UMERICAL RESULTS

In order to check the accuracy of the new high-order
mixed-edge rectangular elements, some numerical results are
given here. Fig. 2 shows the relative error of the computed

for the dominant mode in the rectangular waveguide and
the convergence property of numerical calculations, where

, and are the numbers of the nodes for , and
components, respectively, and corresponds

to the total number of the degrees of freedom. The relative
error is defined as

Relative error

It is confirmed from Fig. 2 that the high-order mixed-edge
rectangular elements can give accurate results with faster
convergence than the lowest mixed-edge rectangular elements
and the high-order covariant projection element [18]. Table I
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presents a comparison of propagation constants for the first
three modes in the slab dielectric loaded waveguide shown in
Fig. 3. It can been seen from the table that the accuracy of
the high-order mixed-edge rectangular elements is about one
order higher than that of the lowest order one and have the
same accuracy as that of the high-order covariant projection
element—even if the unknowns are only 64% as many as
those analyzed in the lowest order and the high-order covariant
projection element. Fig. 4 presents the dispersion curves of
the dominant mode in the waveguide partially filled with a
lossy anisotropic dielectric block, with the real part of
as a parameter. The results calculated in [19] are also given
in Fig. 4, indicated by dots. It can been seen from the curve
that the agreement of the results is very good, and thus, the
effectiveness and the accuracy of the present approach are
verified.

IV. CONCLUSION

An efficient high-order mixed-edge rectangular element is
proposed. It is demonstrated that the new element can provide
higher calculating accuracy and efficiency with no spurious
solutions. The matching relation among the orders of the
interpolated polynomials for three components in the full
vector functional in this paper is different from that in [18].
The success of the present element reveals that the matching
relation given in this paper is an improvement to that given in
[18]. This relationship plays an important role in eliminating
spurious solutions and is the key point in increasing the
accuracy and efficiency of the calculation.
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